3.1.38 \(\int \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\) [38]

Optimal. Leaf size=64 \[ -\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}-\frac {a \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}} \]

[Out]

-arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))*a^(1/2)/d-a*cot(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2851, 2852, 212} \begin {gather*} -\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]^2*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-((Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/d) - (a*Cot[c + d*x])/(d*Sqrt[a + a*Sin[c
 + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx &=-\frac {a \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}+\frac {1}{2} \int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx\\ &=-\frac {a \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}-\frac {a \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}\\ &=-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}-\frac {a \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(178\) vs. \(2(64)=128\).
time = 0.48, size = 178, normalized size = 2.78 \begin {gather*} -\frac {\csc ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sin (c+d x))} \left (2 \cos \left (\frac {1}{2} (c+d x)\right )-2 \sin \left (\frac {1}{2} (c+d x)\right )+\left (\log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \sin (c+d x)\right )}{d \left (1+\cot \left (\frac {1}{2} (c+d x)\right )\right ) \left (\csc \left (\frac {1}{4} (c+d x)\right )-\sec \left (\frac {1}{4} (c+d x)\right )\right ) \left (\csc \left (\frac {1}{4} (c+d x)\right )+\sec \left (\frac {1}{4} (c+d x)\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]^2*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-((Csc[(c + d*x)/2]^4*Sqrt[a*(1 + Sin[c + d*x])]*(2*Cos[(c + d*x)/2] - 2*Sin[(c + d*x)/2] + (Log[1 + Cos[(c +
d*x)/2] - Sin[(c + d*x)/2]] - Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])*Sin[c + d*x]))/(d*(1 + Cot[(c + d*
x)/2])*(Csc[(c + d*x)/4] - Sec[(c + d*x)/4])*(Csc[(c + d*x)/4] + Sec[(c + d*x)/4])))

________________________________________________________________________________________

Maple [A]
time = 1.77, size = 104, normalized size = 1.62

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (\sqrt {a -a \sin \left (d x +c \right )}\, a^{\frac {3}{2}}+\arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}}{\sqrt {a}}\right ) a^{2} \sin \left (d x +c \right )\right )}{\sin \left (d x +c \right ) a^{\frac {3}{2}} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(104\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*((a-a*sin(d*x+c))^(1/2)*a^(3/2)+arctanh((a-a*sin(d*x+c))^(1/2)/a^(1/
2))*a^2*sin(d*x+c))/sin(d*x+c)/a^(3/2)/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*csc(d*x + c)^2, x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 258 vs. \(2 (56) = 112\).
time = 0.35, size = 258, normalized size = 4.03 \begin {gather*} \frac {{\left (\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + 4 \, \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{4 \, {\left (d \cos \left (d x + c\right )^{2} - {\left (d \cos \left (d x + c\right ) + d\right )} \sin \left (d x + c\right ) - d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*((cos(d*x + c)^2 - (cos(d*x + c) + 1)*sin(d*x + c) - 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2
 - 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a)
- 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c
)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) + 4*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(
d*x + c) + 1))/(d*cos(d*x + c)^2 - (d*cos(d*x + c) + d)*sin(d*x + c) - d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )} \csc ^{2}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)**2*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(c + d*x) + 1))*csc(c + d*x)**2, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 122 vs. \(2 (56) = 112\).
time = 0.50, size = 122, normalized size = 1.91 \begin {gather*} -\frac {\sqrt {2} {\left (\sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1}\right )} \sqrt {a}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*(sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-1/4*pi + 1
/2*d*x + 1/2*c)))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) + 4*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*pi + 1/
2*d*x + 1/2*c)/(2*sin(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1))*sqrt(a)/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\sqrt {a+a\,\sin \left (c+d\,x\right )}}{{\sin \left (c+d\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^(1/2)/sin(c + d*x)^2,x)

[Out]

int((a + a*sin(c + d*x))^(1/2)/sin(c + d*x)^2, x)

________________________________________________________________________________________